This package implements some graph layout algorithms that are not available in igraph.
A detailed introductory tutorial for graphlayouts and ggraph can be found here.
The package implements the following algorithms:
# dev version remotes::install_github("schochastics/graphlayouts") #CRAN install.packages("graphlayouts")
This example is a bit of a special case since it exploits some weird issues in igraph.
library(igraph) library(ggraph) library(graphlayouts) set.seed(666) pa <- sample_pa(1000,1,1,directed = F) ggraph(pa,layout = "nicely")+ geom_edge_link0(width=0.2,colour="grey")+ geom_node_point(col="black",size=0.3)+ theme_graph()

ggraph(pa,layout="stress")+ geom_edge_link0(width=0.2,colour="grey")+ geom_node_point(col="black",size=0.3)+ theme_graph()

Stress majorization also works for networks with several components. It relies on a bin packing algorithm to efficiently put the components in a rectangle, rather than a circle.
set.seed(666) g <- disjoint_union( sample_pa(10,directed = F), sample_pa(20,directed = F), sample_pa(30,directed = F), sample_pa(40,directed = F), sample_pa(50,directed = F), sample_pa(60,directed = F), sample_pa(80,directed = F) ) ggraph(g,layout = "nicely") + geom_edge_link0() + geom_node_point() + theme_graph()

ggraph(g, layout = "stress",bbox = 40) + geom_edge_link0() + geom_node_point() + theme_graph()

Backbone layouts are helpful for drawing hairballs.
set.seed(665) #create network with a group structure g <- sample_islands(9,40,0.4,15) g <- simplify(g) V(g)$grp <- as.character(rep(1:9,each=40)) ggraph(g,layout = "stress")+ geom_edge_link0(colour=rgb(0,0,0,0.5),width=0.1)+ geom_node_point(aes(col=grp))+ scale_color_brewer(palette = "Set1")+ theme_graph()+ theme(legend.position = "none")

The backbone layout helps to uncover potential group structures based on edge embeddedness and puts more emphasis on this structure in the layout.
bb <- layout_as_backbone(g,keep=0.4) E(g)$col <- F E(g)$col[bb$backbone] <- T ggraph(g,layout="manual",x=bb$xy[,1],y=bb$xy[,2])+ geom_edge_link0(aes(col=col),width=0.1)+ geom_node_point(aes(col=grp))+ scale_color_brewer(palette = "Set1")+ scale_edge_color_manual(values=c(rgb(0,0,0,0.3),rgb(0,0,0,1)))+ theme_graph()+ theme(legend.position = "none")

The function layout_with_focus() creates a radial layout around a focal node. All nodes with the same distance from the focal node are on the same circle.
library(igraphdata) library(patchwork) data("karate") p1 <- ggraph(karate,layout = "focus",focus = 1) + draw_circle(use = "focus",max.circle = 3)+ geom_edge_link0(edge_color="black",edge_width=0.3)+ geom_node_point(aes(fill=as.factor(Faction)),size=2,shape=21)+ scale_fill_manual(values=c("#8B2323", "#EEAD0E"))+ theme_graph()+ theme(legend.position = "none")+ coord_fixed()+ labs(title= "Focus on Mr. Hi") p2 <- ggraph(karate,layout = "focus",focus = 34) + draw_circle(use = "focus",max.circle = 4)+ geom_edge_link0(edge_color="black",edge_width=0.3)+ geom_node_point(aes(fill=as.factor(Faction)),size=2,shape=21)+ scale_fill_manual(values=c("#8B2323", "#EEAD0E"))+ theme_graph()+ theme(legend.position = "none")+ coord_fixed()+ labs(title= "Focus on John A.") p1+p2

The function layout_with_centrality creates a radial layout around the node with the highest centrality value. The further outside a node is, the more peripheral it is.
library(igraphdata) library(patchwork) data("karate") bc <- betweenness(karate) p1 <- ggraph(karate,layout = "centrality", centrality = bc, tseq = seq(0,1,0.15)) + draw_circle(use = "cent") + annotate_circle(bc,format="",pos="bottom") + geom_edge_link0(edge_color="black",edge_width=0.3)+ geom_node_point(aes(fill=as.factor(Faction)),size=2,shape=21)+ scale_fill_manual(values=c("#8B2323", "#EEAD0E"))+ theme_graph()+ theme(legend.position = "none")+ coord_fixed()+ labs(title="betweenness centrality") cc <- closeness(karate) p2 <- ggraph(karate,layout = "centrality", centrality = cc, tseq = seq(0,1,0.2)) + draw_circle(use = "cent") + annotate_circle(cc,format="scientific",pos="bottom") + geom_edge_link0(edge_color="black",edge_width=0.3)+ geom_node_point(aes(fill=as.factor(Faction)),size=2,shape=21)+ scale_fill_manual(values=c("#8B2323", "#EEAD0E"))+ theme_graph()+ theme(legend.position = "none")+ coord_fixed()+ labs(title="closeness centrality") p1+p2

graphlayouts implements two algorithms for visualizing large networks (<100k nodes). layout_with_pmds() is similar to layout_with_mds() but performs the multidimensional scaling only with a small number of pivot nodes. Usually, 50-100 are enough to obtain similar results to the full MDS.
layout_with_sparse_stress() performs stress majorization only with a small number of pivots (~50-100). The runtime performance is inferior to pivotMDS but the quality is far superior.
A comparison of runtimes and layout quality can be found in the wiki
tl;dr: both layout algorithms appear to be faster than the fastest igraph algorithm layout_with_drl().
Below are two examples of layouts generated for large graphs using layout_with_sparse_stress()
A retweet network with 18k nodes and 61k edges
A co-citation network with 12k nodes and 68k edges
layout_as_dynamic() allows you to visualize snapshots of longitudinal network data. Nodes are anchored with a reference layout and only moved slightly in each wave depending on deleted/added edges. In this way, it is easy to track down specific nodes throughout time. Use patchwork to put the individual plots next to each other.
library(patchwork) #gList is a list of longitudinal networks. xy <- layout_as_dynamic(gList,alpha = 0.2) pList <- vector("list",length(gList)) for(i in 1:length(gList)){ pList[[i]] <- ggraph(gList[[i]],layout="manual",x=xy[[i]][,1],y=xy[[i]][,2])+ geom_edge_link0(edge_width=0.6,edge_colour="grey66")+ geom_node_point(shape=21,aes(fill=smoking),size=3)+ geom_node_text(aes(label=1:50),repel = T)+ scale_fill_manual(values=c("forestgreen","grey25","firebrick"),guide=ifelse(i!=2,FALSE,"legend"))+ theme_graph()+ theme(legend.position="bottom")+ labs(title=paste0("Wave ",i)) } Reduce("+",pList)+ plot_annotation(title="Friendship network",theme = theme(title = element_text(family="Arial Narrow",face = "bold",size=16)))

The functions layout_mirror() and layout_rotate() can be used to manipulate an existing layout
